ANNEXE

COMPLEMENT SUR LE CALCUL THEORIQUE DU MODULE ELASTIQUE G'

Le modèle utilisé suppose que le module élastique, à fréquence infinie, est donné par l'équation suivante :

$$G_o = G'_{\omega \to \infty} = \frac{\alpha}{R} \frac{\partial^2 V_T}{\partial d^2}$$

Or <u>U(r)</u>, aussi noté V_T, représentant l'énergie d'interaction du système, est donnée par la formule :

$$U(r) = \frac{L_{B}}{r} \cdot kT z_{eff}^{2} e^{-\kappa r} - \frac{A}{r} \cdot \frac{a}{6(1-2a/r)} - \frac{\lambda}{r^{3}} kT (2a)^{3}$$

Avec:

G': le module élastique (Pa),

G₀: limite du module élastique à grande fréquence,

 A_{121} : constante entre deux particules du même type 1 dans un milieu 2, avec le TiO_2 (1) et le PDMS (2), $A_{121} = 6,14.10^{-22}$ J,

 $Z_{eff} = 5 \text{ charges/particule de TiO}_2$,

 κ : constante de Debye, $\kappa = 43817804,6 \text{ m}^{-1}$,

r: la distance entre les centres de deux particules et $r_{\text{eff}} = \frac{2(1-\phi)}{\phi \rho_s a_s}$,

 $d = r \left[\left(\frac{1}{3\pi\phi} + \frac{5}{6} \right)^{1/2} - 1 \right]$: équation de Woodstock donnant la distance moyenne entre voisins les plus proches,

 $\alpha = \left(\frac{3}{32}\right) \cdot \phi_{\rm m} n$: facteur géométrique décrivant la coordination des particules alignées, où, $\phi_{\rm m}$: la fraction volumique maximale d'empilement, n: le nombre moyen de voisins (coordination).

 $R = 2 a \left(\frac{\phi_m}{\phi}\right)^{1/3}$: la distance centre à centre entre particules dans un réseau ordonné de particules, où, a : rayon moyen des particules de TiO₂.

$$L_{\rm B} = \frac{e^2}{4\pi\epsilon \ \epsilon \ kT}$$

 $L_B = \frac{e^2}{4\pi\epsilon_0 \epsilon_0 kT}$ où, e : la charge de l'électron, e = 1,6021.10⁻¹⁹ C

 ε_0 : la constante diélectrique du vide, $\varepsilon_0 = 8,85.10^{-12}~\mathrm{F.m^{-1}}$,

k: la constante de Boltzmann, $k = 1,38.10^{-23} \text{ m}^2.\text{kg.s}^{-2}.\text{K}^{-1}$

T: la température pendant l'expérience, $T \sim 25^{\circ}C = 298,15K$.

 $\lambda = \pi \cdot \epsilon_0 \epsilon_m (\beta \cdot E)^2 a^3 / kT$: paramètre d'échange, sans dimension caractérisant l'importance relative de l'énergie d'interaction dipolaire et de l'énergie thermique.

où,
$$\beta = \frac{\varepsilon_p - \varepsilon_m}{\varepsilon_p + 2\varepsilon_m}$$

 $\varepsilon_{\rm p}$: la constante diélectrique de la particule $\varepsilon_{\rm TiO2} = 54$,

 $\varepsilon_{\rm m}$: la constante diélectrique du milieu $\varepsilon_{\rm PDMS}=2.72$,

E : le champ électrique,

En effectuant la dérivée seconde de U(r) par rapport à r (ou d), on obtient :

$$\frac{\partial^{2}U(r)}{\partial r^{2}} = \frac{(L_{B} \cdot kTz_{eff}^{2})\kappa^{2}}{r} \cdot \exp\left[-\kappa \cdot r\right] + \frac{(L_{B} \cdot kTz_{eff}^{2})\kappa}{r^{2}} \cdot \exp\left[-\kappa \cdot r\right] + \frac{(L_{B} \cdot kTz_{eff}^{2})\kappa}{r^{3}} \cdot \exp\left[-\kappa \cdot r\right] - A \cdot \frac{2a}{6(r-2a)^{3}} - \frac{12\lambda}{r^{5}}kT(2a)^{3}$$

En rappelant que G_0 et U(r) sont liés par la formule suivante :

$$G_o = G'_{\omega \to \infty} = \frac{\alpha}{R} \frac{\partial \mathcal{N}_T}{\partial d^2}$$

Nous calculons, pour chaque valeur expérimentale du champ électrique, la valeur du module élastique associée, à l'aide des paramètres du système TiO2-PDMS.

Nous obtenons les valeurs représentées dans le tableau ci-dessous, qui nous permettent de les comparer aux valeurs expérimentales.

E (V/mm)	G₀ (Pa)	G₀ (Pa)
	Calcul	exp
0	972,68	10,00
100	974,48	100,00
200	979,88	100,00
300	988,87	150,00
450	1009,10	200,00
600	1037,43	250,00
800	1087,79	500,00
1000	1152,54	700,00
1300	1276,65	970,00
1500	1377,37	1100,00
2000	1692,13	1600,00
2500	2096,82	2100,00

Nous traçons ensuite le graphe du module élastique en fonction du champ électrique. Nous remarquons que pour $E < E_{lim}$, les valeurs expérimentales et théoriques sont très différentes, puis que pour $E > E_{lim}$, leur ordre de grandeur devient le même.

Cela s'explique par le fait que le modèle théorique utilisé suppose que le système est un réseau de particules, c'est-à-dire pour $\lambda >>1$ (\Leftrightarrow $E>E_{lim}$). C'est ainsi, que pour $\lambda <1$ (\Leftrightarrow $E<E_{lim}$) les calculs théoriques sont faux, et deviennent cohérents avec l'expérience pour $\lambda >>1$.

