The new chaotic pendulum

fr_icon
Content
  1. Plan of the study
  2. Simple pendulum
  3. Spherical pendulum
  4. Inclined pendulum
  5. Chaotic pendulum

Preliminary study
case of the simple pendulum

We will begin the study of our pendulum by the most simple case we can encounter: the simple pendulum. It is in fact only constituted of a weight $m$, oscillating without friction in a plane, and suspended by a string of length $l$ and with no mass. This system is subjected to the gravity $\vec{g}$.


Positions and speeds

Let us begin by seeking the coordinates of the weight regarding the angle $\theta$, and the corresponding speeds: $$ \left \{ \begin{array}{r c l} x & = & l \sin \theta \\ y & = & 0 \\ z & = & -l \cos \theta \\ \end{array} \right . \; \Rightarrow \; \left \{ \begin{array}{r c l} \dot{x} & = & l \dot{\theta} \cos \theta \\ \dot{z} & = & l \dot{\theta}\sin \theta\\ \end{array} \right . $$

Energies, Lagrangian and movement equation

We can then find the kinetic and potential energy, and thus the corresponding Lagrangian [ref] $\mathcal{L}$:
$$ \left . \begin{array}{r c l} E_k & = & \frac{1}{2}mv^2=\frac{1}{2}m\left(\sqrt{\dot{x}^2+\dot{y}^2+\dot{z}^2}\right)^2 \\ & = & \frac{1}{2}ml^2\dot{\theta}^2\\ \\ E_p & = & -\vec{W}\cdot\vec{r}=mgz=-mgl\cos\theta\\ \\ \\ L & = & E_k-E_p\\ & = & \frac{1}{2}ml^2\dot{\theta}^2+mgl\cos\theta\\ \end{array} \right . $$

The Euler-Lagrange equations give us, with $\theta$ as a generalized coordinate: $$ \begin{eqnarray} \frac{\partial L}{\partial \theta} = \frac{\text{d}}{\text{d}t}\frac{\partial L}{\partial\dot{\theta}} \; & \Rightarrow \; & \ddot{\theta}=-\frac{g}{l}\sin\theta \end{eqnarray} $$

Trajectory and phase diagram

We will now integrate the equation above to get the simple pendulum's spatial trajectory and phase diagram.
Since the movement is made in a plan, it is easy to guess that the trajectory will be a part of a circle. On va maintenant intégrer l'équation obtenue pour obtenir la trajectoire spatiale et le portrait de phase du pendule simple.
Le mouvement étant plan, la trajectoire est aisée à deviner: on obtiendra une portion de cercle. phase portrait